Scheme in 4 days

A Navy/FNMOC presentation

Welcomel

Course material & Tools

R5RS document: terse.

Teach Yourself Scheme in Fixnum Days by Do-
rai Sitaram: direct.

Implementations: Gambit, DrScheme.

Emacs as editor.

Design Principles

Small, clear, fundamental concepts of compu-
tation.

Simple prefix syntax (functional composition):
(-23),(E23), (- (x34) (x8T7))

= no precedence of operators.

Avoids: What does ‘A[a--] = a--;’ mean?

Independent from computer binary representa-
tion.

Proper tail recursion.

Dynamic types, dynamic memory management.

Dynamic approach

Data types: vector, list, numbers, string, sym-
bol, char, boolean, port, procedure (aka clo-
sure, function, continuation).

Dynamic types: no type declarations.
(define (f x y) (list x y))

x and y have no static type, they may be bound
to any data type.

(f12) =00 2)

(f "a" 3.4) = ("a" 3.4)

Dynamic memory allocation

Vectors, lists, closures, etc., are allocated au-
tomatically in memory.

This dynamic space is the heap.

It is impossible to corrupt the heap by pro-
gramming mistakes.

It is a “safe” language where the underlying
machine is hidden.

Generic functions

The dynamic types have one advantage:

Generic functions can easily be built.

In general, Scheme compilers cannot catch type
errors.

A programmer should describe variable types
In comments.

Prototyping

Scheme is a good language for prototyping.

Data types do not have to be crafted in details
early on.

Easier to modify in later stages of the life cycle
of the software.

Standard??

There are two: IEEE C R5RS.

For most Schemers, R5RS is the standard.

The IEEE promotes Scheme outside academia.

Will there be a R6RS? May be not.

But ...

Srfi, Scheme Request For Implementation, is
the new way.

Scheme implementations

Gambit: good debugger, good compiler.

DrScheme: good libraries, GUI environment.

Bigloo: good compiler, good tools, fast code,
nice emacs environment (the BEE).

Chez Scheme: commercial.

Others: MIT Scheme, Scheme 48, ...

Most are free.

A good text editor

Emacs: Scheme mode, colors, parentheses.
Run Scheme interpreter in one buffer.

It is fast and simple.

You will not find ___ in RBRS

Threads, module system, records, detailed OS
interface.

But, implementations do provide some of these,
and much more in some cases.

Basic data types (1)

Numbers: 2, 4.5, 2+6i, 3/4, 1876281728671222.

Char: #\C, #\(, #\space.

Boolean: #t, #f.

String: " Paris electric”.

Basic data types (2)

Literal symbols, lists and vectors must be quoted.
’(1 2 3) otherwise (1 2 3) is a function call.
Symbol: ’products, ’<=, ’<xml>, ’<?doc?>.
List: >(1 2 3), ’("al" al 2.3), >(1 (2 3) (4)).
Vector: *#(2 3), *#(left right 3.2)

Pair: (a . 2), (2 . 2), >(#\a . #\Db).

Basic data type: port

(current-output-port) = #<output-port>

(open-input-file "ttt") = #<input-port>

We can read or write to ports.

(read port)

(display exp port)

(write exp port)

Basic data type: procedure

Procedure: (lambda (x y) (- x y)).

The procedure type represents functions and
closures.

More on closures later.

Quote

'pay is the literal symbol pay
but
pay denotes the value of a variable.

We can also write (quote pay).

It is redundant to quote numbers, chars, booleans
and strings.

Simple if

(if (K x 7)
(display "That is small!")
(display "Not so small"))
Let L = (1 2 3)

(if L ’ok ’empty) = ok

Anything not #f is true.

set!

set! is the assignment operator.

(set! x 2)

(set!' L ’(a b c))

X = 2

L= (abc)

It can be used on local and global variables.

Function composition

Scheme syntax uses function composition.
(f (gz))

f and g are composed together.

(display (abs (- (* x y) z)))

Also called prefix notation.

Macros

Scheme macros are unlike C macros.
C macros use text processing.

Scheme macros uses structure forms.

(define-syntax and
(syntax-rules ()
((and) #t)
((and e) e)
((and el e2 ...)
(if el (and e2 ...) #£))))

Unlike a function, a macro does not evaluate
its argument.

he end?

Scheme is built from:

set!, if, lambda, composition of functions, data
types, macros, and primitives.

The rest of Scheme is defined from these.

Having more syntactic forms is very useful.

So you have: let, let*, cond, case, define, etc.

Let us define ...

A function
(define f
(lambda (x)
(if (< x 0)
(sqrt (abs x))
(sqrt x))))
(f -16) = 4
(f 16) = 4
X is local to the lambda; it is a parameter.

f can be considered a variable of type function.

S0, define may create variables of other types.

Define variables

define may introduce variables of any type:

(define 1 (a b c 4))

(define pi 3.141592653589793)

(define msgl "Error in ...")

(define v1 ’#(a b c d e))

Define, function special syntax

Functions may be defined using a special syn-
tax:

(define (f x y)
(+ x y))

IS equivalent to
(define f

(lambda (x y)
(+ x y)))

A program = definitions +

expressions

A Scheme program is a series of definitions and
expressions.

(define x ...)
(define f (lambda (a b c) ...))
(define g (lambda (m n) ...))

(f 12 3)

A simple program

;3 Only two expressions

(display "Hello world")

(newline)

A Scheme program is a sequence of expres-
sions, some of which could be function or vari-
able definitions.

Load

A large system can be split in several files.

The primitive ‘load’ dynamically load a Scheme
file into the interpreter.

(load "partA")
(load "partB")

(load "partZ")

Global vs local

All definitions at “top-level” are global.

There are ways to define locals.

The macro let binds variables to values and
evaluates a series of expressions.

(let ((x 2)
(y 3))
(+ x y))

x and y are local variables.

The value of let is the value of the last ex-
pression in its body.

Local function definitions

define may contain local functions.

In a function:

(define (f a b)

(define (¢ n) (*x n n))

(sqrt (+ (c a) (c b))))

This is simply a useful syntax as a let could
define the function c.

Local definitions in let

A let may have local functions.

(let ((x #£)
(y #£))
(define (reset)
(set! x 0) (set! y 0))

. (reset) ...

reset iS local to the let, not accessible outside
of it.

Numbers

Scheme has several number types: integer,
complex, rational, real.

And several basic arithmetic and trigonometric
functions: +, %, -, /, expt, remainder, modulo,
ceiling, floor, abs, max, min, sqrt, sin, cos,

tan, gcd, lcm, acos, asin, €tcC.

Exactness

Numbers are either exact or inexact.
(exact? 2) = #t

(inexact? 1.2) = #t

We always have

(exact? x) = (not (inexact? x)).
Integers and rationals are exact.

Reals are inexact.

Complex numbers are inexact or exact.

Bignum

Large integers can be used.

(expt 2 100)

=

1267650600228229401496703205376

Most Scheme implementations have bignums.

Inexact numbers

Inexact numbers are usually implemented using
64 bits IEEE-754 standard.

(sqrt 2)

= 1.4142135623730951

Scientific notation can be used: 1.3E-10

Rational Numbers

Rationals are fractions: (/ 1 3) or 1/3.

This is not 0.3333333 which is inexact.

All arithmetic operations can be applied to ra-
tionals.

(+ 1/3 2/4) = 5/6

(/ 4/5 9/7) = 28/45

(x 4/5 9/7 4/7 9/2) = 648/245

They are exact numbers as are integers.

(exact? 1/3) = #t

Complex numbers

Complex numbers: 2+44i, -i, +i, 2.3+48.9i

All arithmetic, algebraic, and trigonometric func-
tions can be applied to them.

The can be read or written using read, display
Oor write.

They can be exact or inexact.
(+ 2+4i 4+8i) = 6+12i

(+ 2.32+4.5i 5.6+i) = 7.92+5.5i
(exact? (+ 2+4i 4+8i)) = #t

(exact? (+ 2.32+4.5i 5.6+i)) = #f

Char

A constant char uses the #\ syntax: #\a, #\0,
etc.

R5RS does not impose a coding standard.

Most implementation assumes ASCII 7 bits.

(integer->char 65) = #\A

(char->integer #\A) = 65

R5RS imposes: all letter and digit codes are
in order.

Some implementations have Unicode.

String, 1

A constant string is double-quoted.

"Monterey, California.”

string-length returns the length of a string.

(string-ref s i) refers to the ¢th character of
S.

(string-set! s i v) modifies the ith character
of s.

String, 2

string-append concatenates strings.

(string-append " Hello” "world”) = " Hello world”
(make-string 10 #\.) = " K

(substring "abcdef" 1 3) = "bcC"

substring creates a new string.

List

The empty list is denoted ’ ().

They may contain heterogenous data types

>(#\a a_symbol 2.3 "is")

The function 1list creates a list.

(l1ist 1 2 3) = (1 2 3)

Subtlety: (1 2 3) is not exactly the same as
(1ist 1 2 3) since list creates new pairs.

List and pairs

Lists are constructed from pairs:
(cons 1 2) = (1 . 2)

(1ist 1 2 3) is equivalent to
(cons 1 (cons 2 (cons 3 °())))

Lists are allocated in the heap.

The

(car

(cdr

(cdr

(car

List, car, cdr

most common operations on lists:

(1 23) =>1

(1 2 3)) = (2 3)

>()) = error

> ()) = error

List, C..r

(cadr ’(1 2 3)) = 2

(cddr (1 2 3)) = (3)

In general car where a is a series of at most
four ‘a’s and ‘d’s.

(caadr x) = (car (car (cdr x)))

List?, pair?, null?

(null? L) is #t iff L is the empty list.

(pair? L) is #t iff L is a pair.

(1ist? L) is #t iff L is a proper list.

(list? (1 2 3)) = #t

(list? (1 2 . 3)) = #f

Pair? should be fast, but 1ist? may be slow.

Length, reverse, append

Three common basic functions:
(length ’(a b c)) = 3.

(append ’(1 2) ’(a b)) = (1 2 a b)
(reverse (a b cd) = (d c b a)

Append copies all its arguments, except the
last one.

Length, a peek at recursion

Here is a possible recusive definition of length:

(define (length L)
(if (pair? L)
(+ 1 (length (cdr L)))
0))

But it is slightly incorrect as it should return
an error if L is not a proper list.

List, list-ref

(list-ref (1 2 3 4) 3) =4

(list-ref L i) extracts the ith element of L.

A peek at a recursive definition.

(define (my-list-ref 1 i)
(if (pair? 1)
(if (=i 0)
(car 1)
(my-list-ref (cdr 1) (- i 1)))
(error "list-ref, not a pair.")))

Circular lists

Circular lists may be constructed.

(set! L ’(a b c))

(set-cdr! L L)

L=(aaaaa...

It has infinite length.

(length L) does not terminate.

(append 1 ’(z)) does not terminate.

Graph

General graphs may be constructed from lists.

Some implementations support reading and writ-
ing graphs. (circular references)

Equivalences, equal?

equal? is the most general (vector, list, etc.)
(equal? (1 2 3) ’(1 2 3)) = #t

(equal? ’#(a b c) ’#(a b c)) = #t

(equal? 1/4 2/8) = #t

(equal? 3 3) = #t

(equal? "allo" "allo") = #t

Equivalences, eqv?

eqv? can compare “unstructured” values.
(eqv? x y) implies (equal? x y)

The inverse implication is not true.
(eqv? 2 2) = #t(eqv? #\a #\b) = #f
(eqv? ’aa ’aa) = #t

(eqv? "aa" "aa") = unspecified

Looking alike symbols are equal according to
eqv?; not true for string.

Equivalences, eq~”

eq? compare memory locations.

(eq? (list 1 2 3) (list 1 2 3)) = #f
Because list creates new pairs.
(define 1 ’(1 2 3))

(set! x 1)

(eq? x 1) = #t

Note: there is no such thing as arithmetic on
pointers.

Searching through a list

There are three basic functions.

(member e L)

searches through L for e, using equal?.

It returns the sublist starting with e or #f£f.

(member 2 (1 2 3)) = (2 3)

(member 4 (1 2 3)) = #f.

(memv e 1) uUSeS eqv?

(memg e 1) uses eq?

Association list, alist

A list of pairs:

(define al

>((Canada . Ca) (France . Fr) (Quebec .

(assoc ’Canada al) = (Canada . Ca)

(assoc ’Suisse al) = #f

assoc USes equal? tO compare keys.

Also: assq using eq?, assVv USiNg eqv?.

Qc)))

MBL in Metcast

A MBL request is a list structure.

Let R be
(area
(bounding-box 46 -177 20 100)
(products (METAR)))
To have the bounding-box:
(assoc ’bounding-box (cdr R))

= (bounding-box 46 -177 20 100)

assv would work too.

Vectors

Only one dimensional vectors.

They are heterogenous.

*#("string" symbol 2.3)

vector creates vectors in the heap.

(vector 1 2 3 4) = #(1 2 3 4)

It is of variable arity.

(vector-ref v i) = 1th element of v.

(vector-set! v i val) sets :th element to val.

Data type conversions

(string->1list "abc") = (#\a #\b #\c)

(list->string ’ (#\a #\b #\c)) = "abc”

(list->vector ’(1 2 a)) = #(1 2 a)

(vector->list ’#(a 5 6)) = (a 5 6)

(symbol->string ’abc) = "abc"

(string->symbol "abc67<>") = abc67<>

Equivalences, according to type

= for numbers.

(= 1/2 2/4) = #t

(= "aa" "aa") = error

char=7 for characters.

(char=7 #\a #\b) = #f

string=7 for strings.

(string=7 "ciao" "ciao") = #t

Dynamic types 1

Variables do not have a static type.
Primitives to test expression types:

(string? x), (procedure? x), (char? x), (number? x),
(real? x), (integer? x), (complex? x), (rational? x),
(boolean? x), (symbol? x), (pair? x), (1ist? x),

(vector? x), (port? x).

Dynamic types 2

A variable or function parameter may change
type:

(set! id 2)
(set! id ’#(2 3 4))
(set! id "333")

Generic functions can be defined.

;3 X: string or symbol.
(define (my-length x)
(string-length
(if (symbol? x)
(symbol->string x)
x)))

Some functions are higher-order

Let A=(-7 -5 -3 -2 11 13 17)
Let B =(2.3 hello 4 "allo")
(map abs A) = (7 56 3 2 11 13 17)
(apply <= A) = #t

map and apply take a function has argument:
they are higher-order functions.

The imperative profile of
Scheme

The bang '!" signifies assignment (aka modifi-
cation).

(set! x 2)
(set! x 3)

X =3

Let A=(1 2 3)
(set-car! A -2)
A= (-2 2 3)
(set-cdr! A ’(4 5))

A= (-2 4 5)

and

and iS @ macro (aka special form), not a func-
tion.

It evaluates sequentially its arguments. If one
of them is #f, it returns #£f. If not, it returns
the value of the last arguments.

(and 1 2 3) = 3.
Useful to guard the evaluation of an expression.
(and (pair? L) (car L))

This is #f or the head of L.

or

or IS a special form: it is not a function.

It evaluates sequentially its arguments. If one
of them is not #£, it returns that value. If not,
It returns #f.

(or (k= xy) (<K x0))

As for and, or may be applied to any type.

(or 1 23) =1

cond

cond iS a macro.

(define (o->str o)
(cond
((string? o) o)
((number? o) (number->string o))
((symbol? o) (symbol->string o))
(else #f)))

The conditions are tested in sequence.

For the first true one, the body of the clause
IS evaluated.

case

case IS @ macro.

(case key
((taf metar) (p-taf-metar))
((synop) (p—-synop))
(else #f))

The key is compared (eqv?) with the list of
contants.

The clause that has a constant eqv? to the key
IS evaluated.

Let

let IS a macro.
A let binds a series of variables to values:
(let ((x (expt 2 23))

(pi (* 2 (asin 1))))
. X and pi are locals ...

Let is a hidden lambda

Let is a macro defined using one lambda.

(let ((x 2)
(y 3))
el ... en)

IS equivalent to

((lambda (x y) el ... en) 2 3)

et

let* allows sequential initializations.

(let* ((x 2)

(y (expt 3 x)))
(cons x y))

= (2 9)

Let* is a series of lambda(s)

let* is @ macro defined using lambda(s).

(let* ((x 2)

(y (expt 3 x)))
(cons x y))

is translated into

((lambda (x)
((lambda (y) (comns x y))
(expt 3 x))
2))

Recursion 1

Encompasses iteration and all other forms of
control flow.

(define (printl 1)
(if (pair? 1)
(begin
(display (car 1))
(newline)
(printl (cdr 1)))))

(printl (cdr 1)) is a tail-call. It can be imple-
mented as fast as an iteration.

Scheme: tail-call must not grow the frame
stack.

Recursion 2

In Scheme all iterations are based on recursion.

(define (filter p 1)
(if (pair? 1)
(if (p (car 1))
(cons (car 1) (filter p (cdr 1)))
(filter p (cdr 1)))
>()))

Filter can completely be tail recursive by defin-
ing a local function which accumulates the re-
sult.

Recursion 3

;5 I: p, a function of one argument.
s 1s, [el.
;3 0: #t iff p(e), e in 1s.
(define (for-all p 1s)
(if (pair? 1s)
(and (p (car 1ls)) (for-all p (cdr 1s)))
#t))

(for-all p 1) is true iff all elements of L satisfy
P-

Named let

A named let allows terse recursive loops.

(define (filter p 1)
(let loop ((1s 1) (r (D))
(if (pair? 1s)
(if (p (car 1s))
(loop (cdr 1s) (cons (car 1s) r))
(loop (cdr 1s) r))
r)))

The (let loop ...) is akin to a function defi-
nition.

Variable arity of some functions

(+1234) =10

(k= x y z w) = #t if x, y, z, w are in increasing
order .

(max 1 2 3) = 3

(min 1 2 345 6) =1

Variable arity, rest parm

Variable arity functions can be defined using a
rest parm.

(define (f x y . L)
(list x y L))

L is a rest parm.

Inside £, L is a list — could be empty.

(f12345)=(12(345))

f12)=002 0)

(f 1) = error

For-each

Iterating over a list is a common task.
(for-each procedure list) = #<void>
Done for its side-effect.

(define (display-1ln . 1)

(for-each display 1)

(newline))

(display-1n "For " x " the result is " (sqrt x))
play q

Instead of four calls to display and a call to
newline.

Apply

The apply primitive applies a function to a list
of arguments.

(define (f xy) ...)

(apply £ (1 2))

Let L = (10 10 20)

(apply * L) = 2000

apply is of variable arity

It is impossible to dynamically discover the ar-
ity of a procedure.

A complex example of apply

;5 I: p, a function of n arguments.
;3 ls, a list of n>0 lists of same length.
;5 0: #t iff for all (p al ... an).
(define (all p . 1s)
(if (and (pair? 1s) (for-all pair? 1s))
(and (apply p (map car 1s))
(apply all p (map cdr 1s)))
#t))

(define (good? x y z) (K= x y 2))
(all good? (1 2 3) (4 56) (56 7))

= #t

Input primitives 1

(read): can read all basic data types — except
procedure: vector, list, number, string, sym-

bol, etc.

It can read complex structures like:

(area
(bounding-box 50 100W 42 -64)

(products (METAR)))
(read-char): reads one character

A port can be specified, otherwise it is the
current input port.

Input primitives 2

(current-input-port) = #<input-port (stdin)>
(open-input-file "data") = #<input-port "data">

Or the convenient form where the current in-
put is temporarily redirected.

(with-input-from-file "data"
(lambda ()
(read)
ced))

Input primitives 3

read and read-char may return eof object.
(eof-object? x) = #t iff x is the eof-object.

(define (read-line port)
(let loop ((r ’()) (¢ (read-char port)))
(if (not (eof-object? c))
(if (char=7 c #\newline)
(list->string (reverse r))

(loop (cons c r) (read-char port)))
(list->string (reverse r)))))

(peek-char): peek at the next character

Input primitives 4

Reading all the Scheme data from a file into a
list.

(define (read-file f)
(with-input-from-file f
(lambda ()
(let loop ((o (read)) (r °20)))
(if (eof-object? o)
(reverse r)
(loop (read) (comns o0 r)))))))

Note: the data must conform to Scheme syn-
tax.

OQutput primitives, 1

(current-output-port) = #<output-port (stdout)>

(open-output-file "data") = #<output-port>

(display exp port): writes exp to port.

(write exp port): writes “as is” (to be read
later).

(write-char char port). writes one character.

port IS always optional.

Output primitives, 2

Let x = #(1 2 3)

Let s = "Hello"
(display s) = Hello
(display x) = #(1 2 3)
(write s) = "Hello"
(write x) = #(1 2 3)

There is no “fprintf”. But, some implementa-
tions provide it.

Output primitives, 3

(open-output-file "data") = #<output-port>

Or the convenient form:

(with-output-to-file "data"
(lambda ()

(display result)
cel))

The lambda is called with current output port
redirected.

Closure, 1

A closure is a generalization of a function.

A closure is a function with private variables
that can be modified.

(let ((x 2)
(y 3))
(lambda (z) (+ x y 2)))

= a procedure of one argument with X and vy
pbound to 2 and 3.

Encapsulation of state

Closure can encapsulates state.

(define (make-counter init)
(let ((count init))
(lambda (x)
(set! count (+ count x))

count))

(define c1 (make-counter 1))
(define c2 (make-counter 1))

(c1 1) = 2; (c1 10) = 12; (c1 3) = 15

(c2 -1) = 0; (c1 2) = 17

Count is local: count = error

Functional programming 1

An objective is to make programming closer to
mathematic.

Mathematic: static formulas, as in EF = mc2,
F = ma. Substitution rule works in mathe-
matic.

Programming: dynamic states.

(set! x 2)
(display x)

A very simple way to say it, functional pro-
gramming is:. try to avoid ‘!"|

It should be easier to reason about the pro-
gram.

Functional programming 2

(maxx) x

(maxzizo) = if 1 > zo then zq else x5
(maxzizo...Tn) (maxzi(Mmaxzs...zn))

May be perceived as iteration and recursion:

;3 1 must be non empty.
(define (max . 1)
(let loop ((1s (cdr 1)) (m (car 1)))
(if (pair? 1s)
(if (> (car 1s) m)
(loop (cdr 1s) (car 1s))
(loop (cdr 1s) m))
m)))

Max

Closer to the mathematical definition:

(define (max . 1)
(define (max2 a b) (if (< a b) b a))
(if (and (pair? 1) (pair? (cdr 1)))

(max2 (car 1) (apply max (cdr 1)))
(car 1)))

Foldr

(foldr fa(zx1xo...2n)) =(f 21 (f 2o ... (f2RRQ)...))

A direct recursive approach:

(define (foldr f a 1)
(if (pair? 1)
(f (car 1) (foldr f a (cdr 1)))
a))

(foldr + 0 ’(1 2 3))is1+2+4+3 =6

OO programming

Object Oriented programming can be done us-
ing closures.

(define (make-object ...)
(let ((fieldl ...) ;3 init
(field2 ...) ;5 init
(fieldn ...))

(define (methodl-private ...) ...)

(lambda (mesg . parms)
(case mesg

((add) cel)
((reset) ...)
o))

Communication with the object is done using
the lambda and appropriate messages.

In Metcast server

fastcgi output is buffered, the buffer is local
and all counters are hidden away in a let.

(define SRV:send-reset #1)

(define SRV:send-reply #1)

(let* ((b-len (x 8 1024))
(b-index 0)
(b-max-chunks (* 4 1024))
(b (make-vector b-max-chunks #f))
(bp 0)
(oport (current-output-port))
(output? #£))

(set! SRV:send-reset
(lambda ()
(set! output? #f) (set! b-index 0) (set! bp 0)
(set! oport (current-output-port))))

(set! SRV:send-reply
(lambda fragments

»

In Metcast decoders

The decoders buffer their output before up-
loading into the database.

(define (make-upload-buffer name)
(let ((buffer-name #£)
(buffer-port #£f)
(records-counter 0))

(define (prepare!)
(if (not (initialized?))
(set! buffer-name (0S:tmpnam))
(set! buffer-port (open-output-file buffer-name))
(set! records-counter O0)
(assert (initialized?))))

(lambda (selector)
(case selector
((add-record!)
(prepare!)
(++! records-counter)
buffer-port)))
.)

Continuations 1

A continuation is a closure of one parameter
with a stack.

It is created by capturing a point of execution
with the current stack. Used to implement
exceptions, debugger, co-routines, etc.

(define jump-in #f)

(let ((x 1))
(call-with-current-continuation
(lambda (k) (set! jump-in k)))
(set! x (+ x 1))
X)

= 2
(jump-in #f) = 3

(jump-in #f) = 4

Continuations 2, exception

Error returns to (display "Starting...").

(define throw #f)
(define (error msg) (display msg) (throw #f))

(define (process a)
(if (number? a)
(sqrt a)
(error "Not a number.")))

(define (calculator)
(call-with-current-continuation
(lambda (k) (set! throw k)))

(display "Starting...") (newline)
(let loop ((s 0))

(display s) (newline)

(display "number>")

(loop (+ s (process (read))))))

Continuations 3, a return-esc
mechanism

(define return-esc #f)

(define (call-with-return-esc p . 1)
(call-with-current-continuation
(lambda (k)
(set! return-esc k)
(apply p 1))))

s I:1, (x1 x2 ... xn)
;3 0: x1*x2%...%xn
(define (multiply 1)
(if (pair? 1)
(if (= (car 1) 0)
(return-esc 0)
(* (car 1) (multiply (cdr 1))))
1))

(call-with-return-esc multiply (1 0 4 5)) = O

Because of return-esc 0, it does not unstack
the calls, but jumps back after call-with-return-esc.

